Lifting Prediction to Alignment of RNA Pseudoknots
نویسندگان
چکیده
Prediction and alignment of RNA pseudoknot structures are NP-hard. Nevertheless, several efficient prediction algorithms by dynamic programming have been proposed for restricted classes of pseudoknots. We present a general scheme that yields an efficient alignment algorithm for arbitrary such classes. Moreover, we show that such an alignment algorithm benefits from the class restriction in the same way as the corresponding structure prediction algorithm does. We look at six of these classes in greater detail. The time and space complexity of the alignment algorithm is increased by only a linear factor over the respective prediction algorithm. For five of the classes, no efficient alignment algorithms were known. For the sixth, most general class, we improve the previously best complexity of O(n(5)m(5)) time to O(nm(6)), where n and m denote sequence lengths. Finally, we apply our fastest algorithm with O(nm(4)) time and O(nm(2)) space to comparative de-novo pseudoknot prediction.
منابع مشابه
Dynamic programming based RNA pseudoknot alignment
Pseudoknots are certain structural motifs of RNA molecules. In this thesis we consider the problem of RNA pseudoknot alignment. Most current approaches either discard pseudoknots in order to be efficient or rely on heuristics generating only approximate solutions. This work focuses on dynamic programming based alignment methods and proposes two new approaches for an exact solution of the alignm...
متن کاملSimulFold: Simultaneously Inferring RNA Structures Including Pseudoknots, Alignments, and Trees Using a Bayesian MCMC Framework
Computational methods for predicting evolutionarily conserved rather than thermodynamic RNA structures have recently attracted increased interest. These methods are indispensable not only for elucidating the regulatory roles of known RNA transcripts, but also for predicting RNA genes. It has been notoriously difficult to devise them to make the best use of the available data and to predict high...
متن کاملIPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming
MOTIVATION Pseudoknots found in secondary structures of a number of functional RNAs play various roles in biological processes. Recent methods for predicting RNA secondary structures cover certain classes of pseudoknotted structures, but only a few of them achieve satisfying predictions in terms of both speed and accuracy. RESULTS We propose IPknot, a novel computational method for predicting...
متن کاملAn Iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots
MOTIVATION Pseudoknots have generally been excluded from the prediction of RNA secondary structures due to its difficulty in modeling. Although, several dynamic programming algorithms exist for the prediction of pseudoknots using thermodynamic approaches, they are neither reliable nor efficient. On the other hand, comparative methods are more reliable, but are often done in an ad hoc manner and...
متن کاملBayesian sampling of evolutionarily conserved RNA secondary structures with pseudoknots
MOTIVATION Today many non-coding RNAs are known to play an active role in various important biological processes. Since RNA's functionality is correlated with specific structural motifs that are often conserved in phylogenetically related molecules, computational prediction of RNA structure should ideally be based on a set of homologous primary structures. But many available RNA secondary struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2009